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Evolution of Orbits and Quantum Correlation
Functions by Quadratic Hamiltonians

Marcel Polakovič1
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Quantum systems with quadratic Hamiltonians are considered. Some results about the
time evolution of homogeneous polynomials and of quantum correlation functions are
given. The image of arbitrary orbit of Weyl–Heisenberg group under this time evolution
is shown to be again an orbit of this group. For quantum free particle it is shown that
its time evolution intersects arbitrary such orbit at most once. A result about existence
of more orbits having the same dispersion of some quantum position is presented.
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1. INTRODUCTION

We shall consider orbits of irreducible unitary representations of Weyl–
Heisenberg group (Želobenko and Stern, 1983) in projective Hilbert space
(Marsden and Ratiu, 1999) given by Weyl operators (Weyl, 1931). These orbits
are special cases of generalized coherent states which have many important ap-
plications in mathematical physics (Perelomov, 1987). Quite a recent application
of generalized coherent states is the theory of “classical projections of quantum
mechanics” given by Bóna (1986) (and also in Bóna (2000) where it is called “re-
stricted flows”). In this context, if the group is chosen to be the Weyl–Heisenberg
group, some results about the classical limit of quantum mechanics were achieved
by Polakovič (1998, 2001a,b). A result of this type and some other results for
systems with quadratic Hamiltonians are given in Polakovič (2000). The results
given in the present paper arised as a natural continuation of the just mentioned
work of the present author.

Quadratic Hamiltonians (in positions and momenta) are of great importance
in both classical and quantum mechanics. (Simple examples are, the harmonic
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oscillator and the free particle.) In the whole paper, we shall consider quantum
systems with quadratic Hamiltonians.

Monomials and homogenous polynomials in quantum positions and momenta
are considered. From the fact that the commutator of the quadratic Hamiltonian and
a monomial of degree m is a homogeneous polynomial of degree m (Lemma 1), it is
deduced that the time evolution of a monomial in Heisenberg picture for a quadratic
Hamiltonian is a homogenous polynomial of the same degree (Theorem 2). It
follows that the time evolution of mean values of a monomial (Corollary 3) and
also of arbitrary quantum correlation function (Corollary 4) can be explicitly
computed if we know the mean values of certain monomials in the initial state (if,
again, the Hamiltonian is quadratic).

It is then shown that the evolution operators (for quadratic Hamiltonians) and
the usual Weyl operators in a sense “commute” (Theorem 5). It follows that the
image of arbitrary orbit of Weyl–Heisenberg group under the time evolution of a
quadratic Hamiltonian (for a fixed time t) is again an orbit of Weyl–Heisenberg
group (Corollary 6).

Finally, the quadratic Hamiltonian is specified to be the Hamiltonian of
quantum free particle. Using some auxiliary statements (Lemma 7, Lemma 8,
Lemma 9) it is shown that if the initial state of the free particle is on an orbit of
Weyl–Heisenberg group then the time evolution never intersects this orbit again
(Theorem 10). A simple consequence is that for sufficiently large number there
always exist two different orbits of Weyl–Heisenberg group such that the (constant)
value of the dispersion of some quantum position is the given number for both
orbits (Corollary 11).

2. PRELIMINARIES

Let H be a separable infinite-dimensional Hilbert space and P (H) be the
corresponding projective Hilbert space. If ψ ∈ H is a vector then ψ = Pψ ∈ H
will denote the corresponding projector.

Let us denote by

x = (x1, . . . , x2n) = (q1, . . . , qn, p1, . . . , pn) ∈ R
2n

arbitrary point in the “flat” phase space for a classical Hamiltonian system with n

degrees of freedom. Now

X = (X1, . . . , X2n) = (Q1, . . . ,Qn, P1, . . . , Pn)

is the 2n-tuple of operators of positions and momenta for quantum systems with n
degrees of freedom. These operators satisfy the well-known Heisenberg canonical
commutation relations (CCR).

As the Weyl–Heisenberg group GWH is a central extension of the additive
group R

2n, the unitary representations of GWH can be naturally identified with
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projective representations of R
2n. (For more details, see, e.g., Bóna, 2000.) The

representation we shall use has its origin in CCR and is given by Weyl operators:

Ux = exp

(
i

h
X · S · x

)
.

Here S is a 2n × 2n matrix such that

Sij+n = −Sn+jj = 1, i = 1, . . . , 2n,

Sjk = 0 otherwise.

Now let ψ ∈ H be a vector. The corresponding orbit of (the unitary represen-
tation of) GWH in P (H) (or, which is the same, the orbit of projective representation
of the group R

2n) is

Oψ = {Uxψ ; x ∈ R
2n}.

Now the classical quadratic Hamiltonian will be

h(x) =
2n∑

j,k=1

hjkxjxk, hjk = hkj ∈ R.

The corresponding quantum quadratic Hamiltonian will be

H =
2n∑

j,k=1

hjkXjXk

where the conditions hjk = hkj imply that this is a symmetric operator.

3. TIME EVOLUTION OF HOMOGENOUS POLYNOMIALS

Let us consider the quantum quadratic Hamiltonian H given above. By a
monomial of degree m in (operator) variables Xi we mean an expression like
Xi1 , Xi2 , . . . , Xim . By a homogenous polynomial of degree m in variables Xi

we mean a linear combination of monomials of degree m. Let us denote by
Y1, Y2, . . . , Yd all the monomials of degree m. Some of them are equal as some
pairs from operators Xi commute (e.g. Q1Q2P1 and Q2Q1P1 are equal although
they are formally different). We shall consider only formally different monomials
and it will cause no mistakes in future considerations. (So d = (2n)m.)

Using the derivation property for commutators

[Xi,Xj ,Xk] = Xi[Xj,Xk] + [Xi,Xk]Xj

and CCR it can easily be shown that [Xi,Xj ,Xk] depends linearly on (operator)
variables Xr or is equal to zero and [Xi,Xj ,Xk,Xl] is quadratic in operators Xr
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or also equal to zero. More generally, it can be shown that

[XiXj ,Xk1Xk2 , . . . , Xkm
] =

d∑
c=1

clYl

where cl are some constants. (Again, the result can be zero.) So the commutator of
the operator XiXj and a monomial of degree m in X′s is a homogenous polynomial
of degree m (or zero).

The idea of the proof is simple. It is namely

[XiXj ,Xk1Xk2 , . . . , Xkm
] = Xki

[Xj,Xk1Xk2 , . . . , Xkm
]

+ [Xi,Xk1Xk2 , . . . , Xkm
]Xj

and using mathematical induction and CCR one can show that [Xj ,
Xk1Xk2 , . . . , Xkm

] is either a homogenous polynomial of degree m − 1 or zero. It
is done by using the equality

[Xj,Xk1 , . . . , Xkm
] = Xk1 [Xj,Xk2 , . . . , Xkm

] + [Xj,Xk1 ]Xk2, . . . , Xkm
.

So now we have

Lemma 1. Let H be a quadratic Hamiltonian, Xk1Xk2 , . . . , Xkm
a monomial of

degree m. Then

[H,Xk1Xk2 , . . . , Xkm
] =

d∑
l=1

dlYl

where dl are some constants.

Let us now choose one monomial (of degree m) Yj and consider the cor-
responding time evolution Yj (t) in Heisenberg picture for given (quadratic)
Hamiltonian H . Let us denote

Vt = exp

(
− i

h
tH

)
.

The corresponding equations for Yj (t) are then

d

dt
Yj (t) = i

h
[H,Yj (t)] = i

h
[H,V−t YjVt ] = i

h
V−t [H,Yj ]Vt

= V−t

(
d∑

k=1

cjkYk

)
Vt =

d∑
k=1

cjkYk(t)

where cjk are some constants. Here we used Lemma 1. If now Y (t) =
(Y1(t), . . . , Yd (t)) will be considered to be a column (!) vector of operators, we
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have an (operator) equation

Ẏ (t) = CY (t)

where C is the corresponding d × d matrix with matrix elements Cjk = cjk . The
solution has a simple form

Y (t) = eCtY (0).

Let us denote the matrix elements of the matrix eCt by [eCt ]jk . So we proved a

Theorem 2. Under the notation given above we have

Yj (t) =
d∑

k=1

[eCt ]jkYk

The matrix C is uniquely determined by the (quadratic) Hamiltonian H.

This means that the time evolution of a homogenous polynomial of degree m

in Heisenberg picture with arbitrary quadratic Hamiltonian is again a homogenous
polynomial of degree m. We can say that the set of all homogenous polynomials
of degree m is invariant with respect to the time evolution in Heisenberg picture
for a quadratic Hamiltonian.

Now let us consider a vector ψ ∈ H. Let us stay in Heisenberg picture. Then
we immediately have

Corollary 3. Let the quadratic Hamiltonian H be given. Let for some ψ ∈ H
only the values Tr(PψYk) are known (k = 1, . . . , d). Then all the time evolved
mean values Tr(PψYk(t)) are uniquely determined by this information and can be
explicitly computed by the formula

Tr(PψYk(t)) =
d∑

k=1

[eCt ]jkTr(PψYk).

By a quantum correlation function of order m we mean the function dependent on
ψ ∈ H and defined by the expression

c(ψ) = Tr(Pψ (Xk1 − xk1I )(Xk2 − xk2I ) · · · (Xkm
− xkm

I )).

Here I denotes the identity operator and

xj = Tr(PψXj )

are just the corresponding mean values of observables Xj . Let us consider the
corresponding time evolution of this correlation function

c(ψ(t)) = Tr(Pψ(t)(Xk1 − xk1 (t)) · · · (Xkm
− xkm

(t)))
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Here

ψ(t) = Vtψ

be the time evolved state in Schrodinger picture and

xj (t) = Tr(Pψ(t)Xj )

are the corresponding time evolved mean values. From the Ehrenfest theorem (see,
e.g., Messiah, 1978) now immediately follows that if we know xj (0) then xj (t)
can be computed from classical Hamiltonian equation for corresponding classical
quadratic Hamiltonian.

In Heisenberg picture we can write

c(ψ(t)) = Tr(Pψ (Xk1 (t) − xk1 (t)) · · · (Xkm
(t) − xkm

(t))).

Now a simple computation gives

(Xk1 (t) − xk1 (t)) · · · (Xkm
(t) − xkm

(t))

=
∑

(l1,...,lp,n1,...,nr )

(−1)pxl1 (t) · · · xlp (t)Xn1 (t) · · ·Xnr
(t)

where (l1, . . . , lp, n1, . . . , nr ) is a partition of the index m-tuple (k1, . . . , km).
Having in mind that all the numbers xj (t) are known if the values Tr(PψXj ) are
known, it follows that c(ψ(t)) can be computed if we know all the corresponding
values

Tr(PψXn1 (t) · · ·Xnr
(t)).

But

Xn1 (t) · · ·Xnr
(t) = V−t (Xn1 · · · Xnr

)Vt = Yk(t)

for some monomial Yk of order r. Then according to the Corollary 3 the expression

Tr(PψXn1 (t) · · ·Xnr
(t)) = Tr(PψYk(t))

can be explicitly computed as a (time dependent) linear combination of values
Tr(PψZj ) where the operators Zj are just all monomials of degree r. Recall that
xj (t) is determined by Tr(PψXj ) and Xj is a monomial of degree 1. Then we have
proved the following

Corollary 4. Let ψ ∈ H and Wj are all possible monomials of degrees 1, . . . , m.
Let all the values Tr(PψWj ) are known. Then the time evolution of arbitrary
quantum correlation function of order m

c(ψ(t)) = T r(Pψ (Xk1 (t) − xk1 (t)) · · · (Xkm
(t) − xkm

(t)))
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can be computed explicitly in terms of linear combinations of the given values
Tr(PψWj ) with time-dependent coefficients.

Remark. The dispersion of the quantum mechanical observable Xj in the state
ψ is Tr(Pψ (Xj − xj )2) which is a quantum correlation function of second order.

If we know all the mean values of the monomials of degrees 1, 2 in the
state ψ then the Corollary 4 implies that we know also the time evolved values
of the dispersion. Similar statements are true also for higher centered moments of
quantum observables Xj .

Remark. As an example of computation of time evolution of dispersion (for the
free particle) see Lemma 8.

Now from Theorem 2 we have the time evolution of Xj in Heisenberg picture.
There exist some numbers cj1(t), . . . cj 2n(t) such that

Xj (t) = cj1(t)X1 + · · · + cj 2n(t)X2n. (1)

Let

Vt = exp

(
− i

h
tH

)
and Ux are the Weyl operators defined above. We shall prove

Theorem 5. Under the notation given above it is

VtUx(Vt )
−1 = Ux(t)

where x(t) is a classically evolved state for the Hamiltonian h in time t if the
initial condition is x(0) = x.

Proof: It is namely

VtUx(Vt )
−1 = Vt exp

(
i

h
XjSjkxk

)
(Vt )

−1 = exp

(
i

h
VtXj (Vt )

−1Sjkxk

)
.

From (1) it follows

VtXj (Vt )
−1 = cj1(−t)X1 + · · · + cj 2n(−t)X2n.

In this way, numbers xk(t) are determined determining the vector

x(t) = (x1(t), . . . , x2n(t)),

such that it holds

VtUx(Vt )
−1 = exp

(
i

h
XjSjkxk(t)

)
= Ux(t).
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From the Ehrenfest theorem we obtain that x(t) = y(t), where y(t) is the classically
evolved state for Hamiltonian h in time t if y(0) = x. It is namely

VtUx = Ux(t)Vt ,

so

VtUxφ = Ux(t)Vtφ, (2)

where φ is a generating vector of some orbit of GWH, so that the following
conditions are satisfied:

Tr(PφXj ) = 0, j = 1, . . . , 2n.

Let us consider the mean values of observables Xj for both left and right sides of
(2). For the left side we have from Ehrenfest theorem that these mean values are
exactly yj (t) where y(t) is defined above. From the relation (1) it follows that the
vector Vtφ is also a generating vector of some orbit of GWH. Now it immediately
follows that for the right side the considered mean values are equal to xj (t), so we
have y(t) = x(t). �

Let us now recall that Oφ is an orbit of GWH constructed from a vector φ ∈ H.
We now have

Corollary 6. (see Kubisz, 1992; Polakovič, 2001c) Let φ ∈ H and Oφ is the
corresponding orbit, let ψ1 ∈ H, ψ2 ∈ H be such that ψ1 ∈ Oφ,ψ2 ∈ Oφ . Let
ψ1(t) = Vtψ1, ψ2(t) = Vtψ2. If now φ′ ∈ H is such that ψ1(t) ∈ Oφ′ then also
ψ2(t) ∈ Oφ′ .

Remark. This means that two initial states belong to a single orbit of GWH then
also the corresponding time evolved states (for the same time t and quadratic
Hamiltonian H) belong to a single orbit of GWH. An alternative formulation of
the Corollary 6 could be that the time evolution Vt defines a bijection between the
orbits Oφ and Oφ′ .

4. FREE PARTICLE AND ORBITS OF WEYL–HEISENBERG GROUP

Let us now consider a special case of quadratic Hamiltonian, namely the
quantum free particle in three dimensions. So the Hamiltonian will be

H = P 2

2m
= P 2

1 + P 2
2 + P 2

3

2m
.

The corresponding time evolution will be given by operator

Vt = exp

(
− i

h
tH

)
= exp

(
− i

h
t
P 2

2m

)
.
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As the number of degrees of freedom is 3, we consider the corresponding version
of GWH, namely the central extension of the additive group R

6. As we know, the
corresponding orbits Oψ = O1

ψ,ψ ∈ H will be six-dimensional with canonical
coordinates

x = (q1, q2, q3, p1, p2, p3)

where

qi = Tr (Pφx
Qi), pi = Tr (Pφx

Pi) i = 1, 2, 3

where φx ∈ H, Pφx
is the corresponding (uniquely determined) element of the

orbit Oψ . Let now at time t = 0 the particle is on the orbit Oψ in state φx where

x = (q ′
1, q

′
2, q

′
3, p

′
1, p

′
2, p

′
3)

is arbitrary. Let at time t = T it is again on the orbit Oψ in state φy where

y = (q ′′
1 , q ′′

2 , q ′′
3 , p′′

1 , p
′′
2 , p

′′
3 ).

Now from Ehrenfest theorem and the momentum conservation law for classical
free particle it is p′

1 = p′′
1 , p

′
2 = p′′

2 , p
′
3 = p′′

3 . Let us denote q1 = q ′′
1 − q ′

1, q2 =
q ′′

2 − q2, q3 = q ′′
3 − q ′

3. Let us also denote

q = (q1, q2, q3, 0, 0, 0)

so it is

Uq = exp

(
i

h
(q1P1 + q2P2 + q3P3)

)
.

It is clearly

φy = Uqφx.

But at the same time

φy = VT φx.

Now we have

V2T φx = VT VT φx = VT Uqφx (from commutativity of VT ,Uq)

= UqVT φx = UqUqφx = U2qφx

where we denoted for n ∈ N

nq = (nq1, nq2, nq3, 0, 0, 0).

So by mathematical induction we immediately obtain

VnT φx = Unqφx.

for all n ∈ N. So we proved
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Lemma 7. Let Oψ be arbitrary six-dimensional orbit of GWH, φ ∈ Oψ is arbi-
trary. Let for some T > 0 also VT φ ∈ Oψ . Then for all n ∈ N it is VnT φ ∈ Oψ .

Remark. So we have some periodic structure for points of intersection of the
time evolution of free particle with the given orbit Oψ . The periodicity can be
considered “in time and space.” The time period is T, the “space” period (in
canonical coordinates on Oψ ) is given by vector (translation)

q = (q1, q2, q3, 0, 0, 0)

Let now φ(0) ∈ H is the initial state of the system (free particle) and let

qj (0) = Tr (Pφ(0)Qj ), pj (0) = Tr (Pφ(0)Pj ), j = 1, 2, 3.

The time evolution is given by

φ(t) = Vtφ(0).

Let us denote

qj (t) = Tr (Pφ(t)Qj ), pj (t) = Tr (Pφ(t)Pj ), j = 1, 2, 3

the mean values of positions and momenta evolved in time t. We shall now consider
the time evolution of dispersion of the position Qj (j is arbitrary). It is

Tr (Pφ(t)(Qj − qj (t))2) = Tr
(
Pφ(t)Q

2
j

) − qj (t)2.

It is easy to compute the numbers qj (t)2 as according to the Ehrenfest theorem
the values qi(t), pi(t) have classical time evolution because the Hamiltonian is
quadratic. So we have

qj (t) = qj (0) + pj (0)

m
t.

It is

Tr
(
Pφ(t)Q

2
j

) = Tr
(
VtPφ(0)V−tQ

2
j

) = Tr
(
Pφ(0)V−tQ

2
jVt

)
= Tr (Pφ(0)V−tQjVtV−tQjVt ).

So now we shall compute the time evolution of Qj in Heisenberg picture

Qj (t) = V−tQjVt .

It is

d

dt

∣∣∣∣
t=s

Qj (t) = d

dt

∣∣∣∣
t=0

(V−tQj (s)Vt ) = i

h

[
P 2

2m
,Qj (s)

]
=

= i

2hm
[P 2, V−sQjVs] = i

2hm
[V−sP

2Vs, V−sQjVs] = i

2hm
V−s[P

2,Qj ]Vs

= 1

m
V−sPjVs = 1

m
Pj .
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So we obtained a differential equation for Qj (t), the solution of which is

Qj (t) = Qj + 1

m
Pj t.

It is formally similar to the corresponding expression for qj (t). So

Tr
(
Pφ(t)Q

2
j

) = Tr

(
Pφ(0)

(
Qj + 1

m
Pj t

)2
)

= Tr

(
Pφ(0)

(
Q2

j + t

m
(QjPj + PjQj ) + t2

m2
P 2

j

))

= Tr
(
Pφ(0)Q

2
j

) + t

m
Tr (Pφ(0)(QjPj + PjQj )) + t2

m2
Tr

(
Pφ(0)P

2
j

)
= a + bt + ct2.

As

qj (t)2 =
(

qj (0) + pj (0)

m
t

)2

= qj (0)2 + 2qj (0)
pj (0)

m
t + pj (0)2

m2
t2

= a′ + b′t + c′t2,

the considered (time evolved) dispersion is

Tr
(
Pφ(t)Q

2
j

) − qj (t)2 = (a − a′) + (b − b′)t + (c − c′)t2 = ã + b̃t + c̃t2.

Here

ã = Tr
(
Pφ(0)Q

2
j

) − Tr (Pφ(0)Qj )2,

b̃ = 1

m
(Tr (Pφ(0)(QjPj + PjQj )) − 2Tr (Pφ(0)Qj )Tr (Pφ(0)Pj )),

c̃ = 1

m2

(
Tr

(
Pφ(0)P

2
j

)) − Tr (Pφ(0)Pj )2).

As the spectrum of the operator Pj is purely continuous, φ(0) cannot be an
eigenvector of Pj , so it is c̃ �= 0. As the dispersion is always nonnegative, it is for
all t ∈ R

ã + b̃t + c̃t2 ≥ 0,

so we necessarily have c̃ > 0. We have proved.

Lemma 8. The time evolution (for time t) of the dispersion of the observable Qj

for the free particle is given by an expression ã + b̃t + c̃t2 where ã, b̃, c̃ are the
corresponding real constants, c̃ > 0.



396 Polakovič

Remark. The precise form of the constants ã, b̃, c̃ is given above. It is an example
of computation of time evolution of some dispersion which was mentioned in the
second Remark after Corollary 4.

Remark. This result confirms a well-known fact from QM, namely the “spread-
ing of the wave packet” for the free particle.

Now we formulate a

Lemma 9. (see Bóna, 1984, Note 4.1.7(i)) Let Oψ be an orbit of GWH. Let
Pφ ∈ Oψ . Then the quantum correlation functions are constant on Oψ , i.e. the
value

c(φ) = T r(Pφ(Xj1 − xj1I ) (Xj2 − xj2I ) · · · (Xjm − xjmI ))

does not depend on the choice Pφ ∈ Oψ . (Here xi = T r(PφXi).)

Now we are ready to prove the following

Theorem 10. Let the orbit Oψ be given and φ ∈ H is such that Pφ ∈ Oψ . Let
φ(t) = Vtφ be the time evolved state (of the free particle). Then for t �= 0 we have
Pφ(t) �∈ Oψ .

Proof: Let us suppose that Pφ(T ) ∈ Oψ for some T > 0 (the case T < 0 is
analogous). From Lemma 7 we have Pφ(nT ) ∈ Oψ for all n ∈ N. So for arbitrary
t0 ∈ R there exists t > t0 such that Pφ(t) ∈ Oψ . From the Lemma 9 now it follows
that the dispersion of Qj in the state Pφ(t) is the constant number determined by
Oψ . But this is in contradiction to the Lemma 8. �

Remark. This Theorem says that if the initial state for the free particle is from
the orbit Oψ then the time evolution never more intersects this orbit.

Now using the fact that the time evolution of the dispersion of Qj is given
by the expression ã + b̃t + c̃t2 and c̃ > 0, we have that for arbitrary

A > min{ã + b̃t + c̃t2; t ∈ R}
there exist numbers t1 �= t2 such that

ã + b̃t1 + c̃t2
1 = ã + b̃t2 + c̃t2

2 = A.

Let the corresponding orbits Oψ1 ,Oψ2 are such that Pφ(t1) ∈ Oψ1 , Pφ(t2) ∈ Oψ2 .
From Theorem 10 we have that Oψ1 ∩ Oψ2 = ∅. So we have
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Corollary 11. There exist a number A0 ∈ R such that for all A > A0 there
always exist two different orbits Oψ1,Oψ2 such that both of them have the same
(constant) dispersion A of the position Qj .

Remark. This result gives a partial answer to the natural question: knowing that
the dispersions of all Xj are constants on the orbits of GWH, are there some
different orbits which have the same dispersion for some chosen Xj ?
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Polakovič, M. (2001a). Erratum: Limit of classical projections of quantum mechanics as h → 0,

International Journal of Theoretical Physics 40(3), 767.
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September, 2001, Nemecká, Slovakia, pp. 62–63.

Weyl, H. (1931). The Theory of Groups and Quantum Mechanics, Dover, New York.
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